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Contact inhibition

* A tissue culture is often referred to as a colony of cells, thereby implying
that a cell can in some circumstances be regarded as a social organism
- Abercrombie and Heaysman, 1952

* The velocity of the bodily displacement of a cell tends to be affected by its
contacts with other cells - Weiss, 1945
* A mutual restriction of movement...




Cellular traffic rules

* Movies of single cells moving around other cells
» Statistical measures: maximum path distance, persistence, contact time,
directional autocorrelation, density, etc.

* Pseudopod formation biased by secreted chemicals
* Pseudopod collapse following collisions
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Cell-cell adhesion

* Cells can recognize identical or different cell types
* They can adhere to each other in a selective manner
* Cell adhesion molecules

» (Cadherin (E-cadherin, N-cadherin, P-cadherin]

* Adherens junctions link the cytoskeleton of adjacent cells via clusters of
cadherins
* Adherens junctions grow and strengthen when
* an external force is applied (outside-in])
* Actomyosin contraction is enhanced (inside-out)

* Desmosomes are in the same class as adherens junctions: the
cytoskeletal anchor is intermediate filaments
* (Other cell junctions: tight junctions, gap junctions




Collective cell migration
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Collective cell migration
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Collective cell migration

(A) Strain generated by leader cells (B) Pushing by dividing cells
and cryptic lamellipodia
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Cell-cell adhesion

Intercellular contacts can be
* transient interactions that regulate collective migration of
mesenchymal cells
* stable junctions that allow epithelia and endothelia to form tissue
barriers in the body

Cell adhesion systems resist tensile forces that would otherwise tend to
tear the tissue apart.

As well as contributing to morphogenesis and tissue integrity,
mechanical forces at junctions may provide a mode of cell-cell
communication

* they can propagate very fast and very far




Viscoelasticity

On second-to-minute time-scales, most biological tissues behave as
viscoelastic solids, which signifies that they are elastic-like solids at
minute time-scales but also display viscous properties at shorter time-
scales.

When strain rates are low, loading is quasi-static, signifying that only the
tissue’s elastic properties are solicited.

When strain rates are high, the tissue’s viscous properties are solicited
iIn addition to its elastic properties, leading to additional stress. As a
result, tissues are subjected to transiently higher peak stresses when
deformed at high strain rate and adhesions must be able to withstand
this.

10



Viscoelasticity

* The duration of the applied load plays a role in the final steady state.
Indeed, on minute to hour time-scales, tissues behave as viscoelastic
fluids, which can bear stresses at minute time scales but completely
dissipate stress at hour-long time scales.

* When subjected to short pulses of contractility, tissues behave as
elastic solids but, in response to longer pulses of contractility, they

behave as viscous fluids and adopt the imposed shape as their rest
shape.

Viscoelastic solid
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| \ Viscoelastic liquid
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Stress dissipation
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Maturation of adherens junctions

a 1 Cell protrusions 2 Actin protrusions 3 Contractile actin
initate contact expand AJs bundles support AJs
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Molecular tension sensors

* Forster resonance energy transfer (FRET): radiation-free energy transfer from a
fluorescent donor to an acceptor molecule

* Two fluorophores undergoing efficient energy transfer are connected by a spring-
like linker peptide that stretches or unfolds in response to mechanical forces.

* The increase in fluorophore separation distance leads to a decrease in energy
transfer rates so that mechanical tension can be determined by measuring FRET
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Molecular tension sensors

Requirements for precise force measurements

the linker peptide has to respond to very small forces, such as those
experienced by individual molecules in cells [pN force sensitivity)

the sensor element must quickly return to its original conformation once
forces decrease (reversibility]

the peptide unfolding should be insensitive to the velocity at which mechanical
force is applied (loading-rate insensitivity]

the linker must display similar stretch/ relaxation transitions (absence of
hysteresis]
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Genetically encoded tension sensors

E-cadherin, VE-cadherin, and vinculin

FA0 was derived from spider silk protein
Sensitive to forces of about 1-6 pN
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Genetically encoded tension sensors

Vinculin connects integrins to actin filaments

Tension across vinculin in stable focal adhesions 2.5 pN
High force leads to adhesion assembly and enlargement
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Cell clusters as active nematics

Liquid crystals are made up of anisotropic molecules
Flow like particles in liquid but can orient in a crystal-like way
Long range orientation order

Dense cell environment Bend and splay
configurations

N2

Nematic alignment Bend Splay

Topological defect-induced
cell extrusion
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Topological defects

+1 defect on a sphere
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Cell clusters as active nematics (fibroblasts]
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Ive nematics
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Cell clusters as active nematics
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Topological defects organize stresses

Fibronectin
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Topological defects organize stresses
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Topological defects organize stresses

Nuclei

=) Rotation
=) Compression
=) Protrusion
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Epithelial tissue mechanics: basics
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Epithelial tissue mechanics: basics

Elongation by cell rearrangement




Hierarchical loading: from tissue to protein
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Epithelial tissue mechanics: basics

* Both solid-like and fluid-like behavior
* Cells continuously die or divide
* Removal of junctions and cells by extrusion
* Formation of new contacts during division
* (ells can change shape or intercalate
* Neighbor exchange

Cell before division
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Epithelial tissue mechanics: basics

* Both solid-like and fluid-like behavior
* Cells continuously die or divide
* Removal of junctions and cells by extrusion
* Formation of new contacts during division
* (ells can change shape or intercalate
* Neighbor exchange

Myosin Il
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Epithelial tissue mechanics: basics

Vertical junction shrinkage Rosette

Horizontal junction formation

31



Jamming transitions

* During collective migration within confluent monolayers, cell sheets flow
like a fluid yet remain fixed and solid-like at short timescales, with the
motion of each cell constrained by the cell crowding due to its
neighbours.

* As cell density rises, neighbouring cells restrict the motion of each cell,
forcing them to move in groups
* jamming or rigidity transition at large density

* Material parameters that encode cell properties such as cell-cell
adhesion and cortical tension, rather than density alone, have been
proposed to govern the rigidity transition in cell monolayers
* (ell shape as an index
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Jamming transitions
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Jamming transitions
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Jamming transitions
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Cell movements from single cell to collective dynamics

* (Cadherin and cell-cell coupling at adherens junctions
* Forces higher than 3pN drive a conformational switch on catenin
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Cell movements from single cell to collective dynamics

* Laminar flows, swirling motions, vortices
* Strain and velocity waves driven by mechanochemical signals
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Experimental methods

Aa Laser ablation

o(x+dx) o(x)

| ﬁ 1
t(x)
hlo(x + dx) — o(x)] = t(x)dx

Ab Deformable droplet
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Experimental methods

‘Model wound’

Chemicals to Cell
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Cell movements from single cell to collective dynamics

* Laminar flows, swirling motions, vortices
e Strain and velocity waves driven by mechanochemical signals
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Tissue motion and geometric confinement
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Curvature
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Tissue motion and geometric confinement
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Mechanical waves

* Change in boundary conditions
* Tissue expansion and collective cell migration
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Mechanical waves

* Maps of cell velocity and cell substrate tractions (T,)

Initiated at the leading edge and progressively propagate towards the
center
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Mechanical waves [movie]
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Forces during collective cell migration

* Large tractions are applied by cells many cell rows behind the edge
» Stresses within the cell sheet on a plane perpendicular to the substrate
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Forces during collective cell migration

* Large tractions are applied by cells many cell rows behind the edge

» Stresses within the cell sheet on a plane perpendicular to the substrate
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Forces during collective cell migration
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Collective durotaxis
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Collective durotaxis

Single cells do not
sense shallow gradients

Random movement
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Forces and interactions of migrating cells

a Sideview

b Top view

Biological structures

Focal adhesions

Gap junctions

Adherens cell-cell junctions
== Actomyosin cortex

— Actomyosin stress fibers

Contact regulation of locomotion (CRL)
=== Contact following of locomotion
= |= Contactinhibition of locomotion

Variables

=P Cell velocity v’
== Cell polarity p’

Forces
<= Active traction
== Cell-substrate friction
Cell-cell tension
€ _) Cell-cell friction
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Forces and interactions of migrating cells

Aa Cryptic lamellipodium

—

====0]Junctional components

Actomyosin
* Focal adhesions
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Epithelial tissue mechanics: basics

(@)

Axis Il and Il (planar axes):
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Epithelial tissue mechanics: actomyosin structures

B Myosin Ii

Supracellular

a-tubulin  Myosinll Phosphorylated Moesin
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Supracellular cable

In Vivo in vitro

Adherens junctions o2 Myosin I
==  Actin cable — Actin filament




Active superelasticity

* Arrays of epithelial domes with controlled geometry
* (Quantification of luminal pressure and epithelial tension




Active superelasticity
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Active superelasticity

Area strain
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Particle Models
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Lattice Models

Interfacial energy, o

Snapshot

Trajectories

Interfacial energy, o
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Vertex Models

apical view

lateral section
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2D Vertex Models

Cell k
Area A,
Perimeter P,

Cell i
Area A
Perimeter P;

Equation of Motion

dxk—F
a7 = Hry

Energy Function

Emonolayer= z Ei = Z KA,-(Ai_A i0)2 + I<P,-(Pi_PiO)2
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Continuum approach by coarse graining vertex model
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Continuum approach by parametrization (elastica]

(@) apical tension

P N (@) y I(s)
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lateral tension
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discrete continuum
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Models of cells and tissues at different scales

e [Focal adhesions, actin, clutch model, surface tension, and continuum
mechanics

Integrins

Substrate
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